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3.1. COMPUTATION OF VARIANCES AND
COVARIANCES

MOTIVATION

In chapter 1 : we have seen that calculation of a variance can raise problems (even
with 3 observations equal to 1000001, 1000002, 1000003)
Single precision is not sufficient and a more refined algorithm proves to be necessary

ALGORITHM I (definition)

ALGORITHM II (calculator)

ALGORITHM III (definition with correction)
ALGORITHM IV (recurrence)

Cumulants

Use of MATLAB
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Chapter 3, section 3.1. Computation of variances and covariances

ALGORITHM I (definition)

based on the definition : given a series of n observations, X;, i = 1, ..., N, with mean X :

2_}_ o2
S —nZ(xi X)* .

81 «— 0
82 «— 0
{Corps}
EBour 1 = 1 3 n
Lire x4

81 «— 81 + =4
finpour

¥ ¢« 8l/n
Bour 1 =1 an

Lire ®{
82— 82 + (xy _ XT)MZ

finpeour
fClature}

5% &« 82/n

Advantage : simplicity and accuracy
Inconvenience : requires two passes over the data
which implies
either data storage in memory
or second reading of the data
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Chapter 3, section 3.1. Computation of variances and covariances

ALGORITHM Il (calculator)

This is the algorithm used in pocket calculators and paper and pencil

It 1s based on the alternative formula for the variance:

1
g =_zxi2 —x2
n
| 81 « 0
52 < 0
{Corps
Pour i = 1 a4 n
Lire ;i

8l «— 81 + =
g2 & 82 + xytE

finpour
fclature )

X +«— 8l/n
st & 82/n - ¥"2
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Chapter 3, section 3.1. Computation of variances and covariances 7

Advantage : fast and requires only one pass (a requirement for calculators with a small
memory space)

Inconvenience : often bad results even with double precision numbers

Example : 1000001, 1000002, 1000003:

x= 1000002
)1 o2 =D HO +(1) _2
=_ =X = -3
S nZ(Xl ) 3 3
whereas
2 2 2
g = (100000D)" +(1000002)° +(1000003)° _ ;10002

3
Accuracy depends on the variation coefficient of the data set : CV = s/X.
Indeed R = ns’ + nx* so dividing both sides by ns’ gives 1 + (CV)™.

If calculations are done with 7 digits and CV 2 < 107, all the significant digits are lost
The smallest CV, the worst

Accuracy of Algorithm I doesn’t depend on CV.

It is said that Algorithm I is numerically stable.

Another stable algorithm is as follows.
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Chapter 3, section 3.1. Computation of variances and covariances

ALGORITHM I (definition with correction)

Like Algorithm I : requires 2 passes
Like Algorithm II : correction for the mean

But the mean is that of devations from the mean, equal to zero in principle

Consequence : better numerical stability

a0 «— 0
81 < 0
52 «— 0
{Corps}
Pour 1 = 1 a4 n
Lire ;i

80 «— 80 + =
finpeour

X ¢ 80/n
Pour 1 = 1 a n

Lire =i

finpour
fclature )

st «— 82/n - (81/M)"Z2

8l «— 81 + =y - X
B2 & 82 + (x; - X )"Z
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Chapter 3, section 3.1. Computation of variances and covariances

ALGORITHM IV (recurrence)

Also a compromise between algorithms I and II
All the avantages but no inconveniences.

Lire =7
81 « 9
82 «— 0
{Corps;}
Pour i = 2 an {Attention! 2 et non 1}
Lire ;i

81 «— 281 4+ =4
82« B2 + ((i*m; - sLy*2)/(i* (1 - 1))

finpour
fCclature !}

¥ « 81l/n
g% & BZ/n

Proof : by induction.
Correct forn=1.
Suppose it is correct for n = N, and show that it is still correct forn=N+ 1
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Chapter 3, section 3.1. Computation of variances and covariances

Advantages :
Only one pass
No storage needed

Same accuracy as Algorithm |

Can even be used with simple precision (provided that the data have no more

significant digits than simple precision)
Can be used with on line data

Can be generalised for weighted moments
Can be generalised to the covariance : using two accumulators S1x and Sly,
say, and by replacing updating S2 par:

S2 « S2 + ((i*xj - SIx)*(i*yj

Sly))/(i*(i - 1)).

Remark. Still another method : provisional mean p, hence updating formulae

S1 ~ S1 + Xxj -
S2 ~ S2 + (Xj

Ho
Ho) "2

©Guy Mélard, 1997, 1999
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11

Cumulants

Remark. Questions of precision aside, let us mention the transition from moments with
respect to the origin m; =S, / n and cumulants K;

In particular

K
Kz =m, -m KI =g
The Fisher asymmetry coefficient = K3/S’ and the Fisher kurtosis coefficient = K,/s".
Computation by recurrence available (Spicer [1972])

©Guy Mélard, 1997, 1999 ISRO, U.L.B.



Chapter 3, section 3.1. Computation of variances and covariances 12

Useof MATLAB

Let x a matrix whose rows correspond to observations and columns to variables

cov(x) covariance matrix

corrcoef(x) |correlation matrix

std(x) vector of standard deviations (corrected for the number of degrees of
freedom)
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Chapter 3, section 3.2. Probabilities and quantiles 13

3.2. PROBABILITIES AND QUANTILES

We consider a univariate distribution (probability or density distribution function,
empirical distribution)

REMINDERS

EVALUATION OF PROBABILITES

Rational approximations

Approximation by continued fractions

Numerical integration

Taylor series expansion

Ad hoc methods

APPROXIMATED COMPUTATION OF QUANTILES
Iteratives methods

Ad hoc methods

Summary of the practical methods

FREQUENCIES OF AN EMPIRICAL DISTRIBUTION
QUANTILES OF AN EMPIRICAL DISTRIBUTION
Use of MATLAB
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Chapter 3, section 3.2. Probabilities and quantiles

REMINDERS
Some definitions (Patel et al. [1976])

(standard) normal distribution
or N(0,1)

FN(O,])(X) =®(x) = \/— Ie v /2dy.

béta distribution
over [0;1], with parameters (a, b)

Faam (0 =1,(a,b) = j y* ' (1-y)* " dy

B( b)?
1

with B(a,b) = .[ vy (1-y)" " dy
0

and a, b> 0 and 0<x<1.

©Guy Mélard, 1997, 1999
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Chapter 3, section 3.2. Probabilities and quantiles 15

Fisher-Snedecor F distribution
With (ny, n,) degrees of freedom

n n
F X)=1-1 _2’_1
SRCEICINNL RS

n, +n;x

Remark. Student t distribution is definied by t; =F, .

Gammadistribution

Density :
e ¥xm™gn . oy
f gamma (X) = “rm with r(m= jo ey dy.
where x>0, 0> 0, m> 0.
The chi squared distribution with n degrees of freedom is a special case of the gamma

law, with parameters 0 = 1/2 and m=2n.
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Chapter 3, section 3.2. Probabilities and quantiles

binomial distribution

with exponent n and parameter p

n
P = P(X=X) :(xj p*(1-p"™, x=0,L,...,n.

n!
x!(n—x)!
very large numbers are generally involved.

n
In the binomial coefficient (xj =

©Guy Mélard, 1997, 1999

and factorials xI=I(x +1) =x.(x-1)...2.1
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Chapter 3, section 3.2. Probabilities and quantiles 17

EVALUATION OF PROBABILITES

The worst way to do the computations is to use the direct way (like nearly always). For
example, for n =13, n! = 6227020800, exceeding simple precision
Recommended procedures.
1. Compute by taking logarithms.
2. Computation by recurrence :
_[ M nex [ D x-1 st NTX+L P n-x+1 p
px_(xjp (1 p) _(X_Jp (1 p) . X l_p_px—l' X l_p
(also the fastest but can loose accuracy by propagation of rounding errors)
3. Use Pascal triangle

(o () ()

keeping the coefficients on one line from right to left, while erasing (less appropriate
than 2. for fixed n).

©Guy Mélard, 1997, 1999 ISRO, U.L.B.



Chapter 3, section 3.2. Probabilities and quantiles

Rational approximations

Of a distribution function F :
k

> ax

Foo =20

> bx!

1=0

+e&(X)

with an error bounded by: |e(x)| <107

Remark. Recall Horner rule for evaluating a polynomial of degree n

Zn:cjxj =c, +xc, +x{c, +x{ .{ ¢, +xc, }}
i=0

Only n multiplications, whereas the direct method requires 2n - 1 multiplications, if
care is taken that X = xX ',

and even 1 + 2 + ... + n=(n+ 1)n/2 multiplications, otherwise.

There exists a Horner method for derivatives of polynomials.

Example. For evaluation of ®(x), with |e(x)| < 2,5107

¥ o | 2|
v o« 1/({{(0,019527y + 0,000344)vy
+ 0,1151%4%v + 0, 196854)v + l]lT-‘-l
81 =z > 0 alors P(x) « 1 - v/2
ginon $lx) « /2

finsi

©Guy Mélard, 1997, 1999 ISRO, U.L.B.
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Chapter 3, section 3.2. Probabilities and quantiles 19

Example. Algorithm AS66, Hill (1985), pour I’évaluation de ®(x), with |e(x)[ <10~

Real Function ALNORM (¥, UPPER)

C
C Algorithm A% 66 Appl. Statist. (1973) wol. 22, p. 424
C
C Ewaluates the tail area of the standardized normal curwve
C from X to infinity if UPPER is .TRUE. ot
C from mimis infinity to X if UPPER is .FAL3E.
....... Implicit Double Precision (&-H, 0-2)
Feal LTONE, UTZERO, ZERO, HALF, ONE, CON, Al, AZ, A3,
§ A4, A5, A6, A7, Bl, BEZ, B3, B4, BS, E6, EBEY, E&, E9,
¢ B1lO, Bl1l, BlZ, ¥, ¥, Z, ZEXP
Logical UPPEER, UP
C
C LTONE and UTZERD muzt be zet Lo sult the particular
C computer (see introductory text)
C
Data LTONE, UTZERO f 7.0, 1ld.66 §
Data ZER0O, HALF, ONE, CON /0.0, 0.5, 1.0, 1l.2&8/
Data Al, AZ, AT,
g A4, AL, LG,
§ A7
§ A0.3953942250444, 0,.3999034358504, 5.755355450455,
g Z0,8213557808, 2.62433121679, 43.6953930692,
§ L.OZ8B5724438/)
Data El, Bz, E3,
g B4, BL, B&,
g E7., ES, E9,
g El0, Bll, Blz
§ A0. 3989422803585, 3.8052E-8, l.00000&L5302,
§ 3.95064794E-4, 1.986153815364, 0.151679116635,
§ 5.29330324926, 4.8385912808, 15.1508972451,
§ 0. 742350924027, 30.789933034, 3.95019417011/
C
ZEXP(Z) = EXPI[Z)
C
UF = UFFER
Z=Xx

If (Z .LT. ZERO) then
UP = .NOT. UP

Z = =k
Endif
If (.NOT. (2 .LE. LTONE .0E. UP .AND. Z .LE. UTEZEERO])
7 then
LLNOEM = EERD
Else

T = HALF*Z+*Z
If {Z .LE. CON] then
ALNOEM = HALF - Z%(Al - AZ*¥/(T + &3 - A44/(Y7 + &5 +

§ Acs(Y + A7)0
Elze
ALNORM = BL1*ZEXP(-Y)/(Z - BEZ + BE3/(Z + B4 + BL/(Z -
§ B& + B7/(Z + B8 - B9/(Z + BLlO + BLl1/(Z +
§ BLZ)1101)
Endif
Enditf
If (.MOT. UP) ALNOEM = ONE - ALNORM
Return
End

There exist methods for which |e(x)| < 10™. Note that ®(x) = (1+erf(x/2"%))/2 if x> 0,
where erf 1s called the error function.

©Guy Mélard, 1997, 1999 ISRO, U.L.B.



Chapter 3, section 3.2. Probabilities and quantiles 20

Approximation by continued fractions

Q+m+m

Convergence criteria do exist. If convergence is valid, an approximant can be used.
For example, the order 3 approximant is

V. = a — a, — a, (b,b; +a;) — i
- - - ~ def
’ b, + a, b, + a,b; b, (b,b; +a,) +a,b; B,
b, + i b,b; +a,

3
The numerator and denominator of the order k approximant, respectively A et Bx can
be obtained by the recurrence relations (due to Wallis in 1655):
A =b AL ta AL,
B, =bBy_, +aB_,
with A, =By=1,A, =B, =0.

©Guy Mélard, 1997, 1999 ISRO, U.L.B.



Chapter 3, section 3.2. Probabilities and quantiles

For example:
A=bA+a A =q
A=bA+taaA=ab
A= b3 A+as A =aq bz b3 +a a (see above).

Normal law : if X> 0

1

1
2
3

X+..

P(x)=1- f(X)

X+
X+
X+

The continued fraction is written
1 1 2 3

X+X+X+ X+

©Guy Mélard, 1997, 1999 ISRO, U.L.B.
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Chapter 3, section 3.2. Probabilities and quantiles 22

Fraction continuée et fonction de distribution normale

X: 1,96 _
f(x): oossmosas |[LL23 | ATAATAA,
Phi(x): 097500210 Xtx+x+x+ | [B =bB. +aB,
"VRAI" (Excel  0,97500217 A1=B0=1,A0=B-1=0
ak bk Ak Bk Ak/BK Phi(x) Erreur
1 0
0 1
1 1,9 1 1,96 0,510204082 0,97018319 -0,00481898
1 1,9 1,9 4,8416 0404824851 0,97634165 0,00133948
2 1,9 58416 13400536 0435630286 0,97454135 -0,00046082
3 1,96  17,329536 40,80749056 0424665564 0,97518214 0,00017997
4 1,96 57,33220056 133,6208255 0429067029 0,97492492 -0,00007726
5 1,96 199,0189695 465,9342708 0,427139582 0,97503756 0,00003538

©Guy Mélard, 1997, 1999 ISRO, U.L.B.
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But the approximation is bad when X is close to 0 (due to slow convergence)

X

-4,0
-3,5
-3,0
25
-2,0
15
-1,0
-0,5
-0,4
-0,3
-0,2
-0,1
0,0
0,1
0,2
0,3
0,4
0,5
1,0
1,5
2,0
2,5
3,0
35
4,0

F(x) fract cont.

0,97500210
-0,00003167
-0,00023263
-0,00134990
-0,00620967
-0,02275013
-0,06680720
-0,15865525
-0,30845553
-0,34403997
-0,37856501
-0,39805470
-0,32795694

0,50000000

0,67204306

0,60194530

0,62143499

0,65596003

0,691544468
0,841344753
0,933192799
0,977249868
0,993790335
0,998650102
0,999767371
0,999968329

©Guy Mélard, 1997, 1999

F(x) Excel

0,97500217
0,00003169
0,00023267
0,00134997
0,00620968
0,02275006
0,06680723
0,15865526
0,30853753
0,34457830
0,38208864
0,42074031
0,46017210
0,50000000
0,53982790
0,57925969
0,61791136
0,65542170
0,691462467
0,84134474
0,933192771
0,977249938
0,99379032
0,998650033
0,999767327
0,999968314

Erreur
-7,00E-08
-6,34E-05
-4,65E-04
-2,70E-03
-1,24E-02
-4,55E-02
-1,34E-01
-3,17E-01
-6,17E-01
-6,89E-01
-7,61E-01
-8,19E-01
-7,88E-01

2,18E-10
1,32E-01
2,27E-02
3,52E-03
5,38E-04
8,20007E-05
1,25092E-08
2,75251E-08
-6,9912E-08
1,4533E-08
6,91916E-08
4,42946E-08
1,47928E-08

ISRO, U.L.B.
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Chapter 3, section 3.2. Probabilities and quantiles 24

Numerical integration

Notably the Newton-Cotes methods (including Simpson and Romberg).
Difficulty: when the variable is not bounded

Also Gauss quadrature related to families of orthogonal polynomials (Legendre,
Laguerre, Hermite, etc.).

Taylor series expansion

And term by term integration
Example:

l X ( )n 2n
¢x:—+—ey/2d and /2 =
* w/ZlT‘!. y nZ; 2"n!

hence
1 _1 n X2n+l
= 2"2n+1)n!
has terms altematmg in sign, producing roundoff errors. On the contrary the following
series expansion has positive coefficients

¢(x):%+ ! e />g(x) where g(x) = Zc x> and c_ =1, c = !

) —C_
/—27_[ o n n n+1 n-1

©Guy Mélard, 1997, 1999 ISRO, U.L.B.



Chapter 3, section 3.2. Probabilities and quantiles 25

Ad hoc methods

Example. Simple algorithm for evaluating the probabilities of a chi squared
distribution (Hill and Pike [1967], Abramowitz and Stegun [1964])

Based on the recurrence relation:
I-F, (X)=1-F, (X

with 1nitial conditions
1-F, (X) =exp(-x/2) 1-F, () =(2/2m) j; exp(—y> / 2)dy

+(x/2)<“‘2>/2 exp(—X/2)
r(n/2)

©Guy Mélard, 1997, 1999 ISRO, U.L.B.
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Program :

FUNCTION PROE (CHIZ,N)

IMPLICIT DOUELE PRECISION (A-H,0-Z)
PROE=0.

IF (N.LE.0) RETURN
IF(CHIZ.GT.FLOAT(100*H) RETURN

IF (CHIZ.LT.0.) RETURN

EMYOZ=EXF {-0.5*CHIZ)

JUM=1.
TEEM=1.
M=N/2
IF (2*M .NE.N) GO TO 1
C-- ENTRY IF N I% EVEN

IF (M.EQ.1) GO TO 11
4 Do 10 I=2,M
FI=I-1
TERM=0. 5+ TERM*CHI Z/FI
10 SUM=SUM+TERM
11 PROE=EMY0Z*5UM
RETURN

C-- ENTEY IF N I3 ODD
1 SETY=30RT (CHIZ)
SRTZ=30RT (CHIZ /2.

C VALUE=Z.* (1. -FREQ (SRETY))
VALUE=1.-ERF [SETZ)

* VALUE= 1.0
IF (N.NE.l) GO TO 2
PROBE=VALUE
FETUEN

£ CON3T=0.7275840%3RTY *EMYT0Z
IF (N.EQ.3) &0 ToO 21

E=I1-1
oo 20 I=1,E
FI =I

TERM=TERM*CHIZ / (Z.*FI+l.)
20 SUM=5UM+TERHM
£1 PROB=CON3T*3TH+VALUE
100 RETUEN

END

* taken from the ULE-VUE computer center library

©Guy Mélard, 1997, 1999
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Chapter 3, section 3.2. Probabilities and quantiles 27

APPROXIMATED COMPUTATION OF QUANTILES

Let X, be the order p quantile of the distribution function F(X) : the (or one ) solution
of equation F(X) = p, or f(X) =4t F(X) - p= 0.

| ter atives methods

Classical methods for solving an algebraic equation:

* methods which make use of derivatives

» methods which don’t use them (but well the fact that the distribution function is
monotone non decreasing).

The iterative methods require an initial value and a convergence criterion.

We consider iteration (i + 1).

©Guy Mélard, 1997, 1999 ISRO, U.L.B.



Chapter 3, section 3.2. Probabilities and quantiles 28

Method using a derivative
Based on a Taylor series expansion of f(X),
f(x)=f(x)+(x-x)f'(x)+remaining
Newton-Raphson algorithm
Point at iteration (i + 1): intersection of the tangent of f(X) at point X; with the X axis:

Excerpt from Thisted [1988], p. 165.

X =% = F(X)/ (%)

©Guy Mélard, 1997, 1999 ISRO, U.L.B.
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Secant algorithm
Point at iteration (i + 1): intersection with the X axis of the secant of f(X) between the
points with abscissea X; and X; _ i:
— X~ X
X =%~
‘ FO6) = f (%)

where the fraction is an approximation of 1/ f'(x ).

f (%)

Note. The method requires two initial values.

Excerpt from Thisted [1988], p. 168.

©Guy Mélard, 1997, 1999 ISRO, U.L.B.
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Bisection method

Suppose the points X; and X; . ; are such that f(x;) f(x;.;) <0 1. e.
Xy =205

2

The method works provided a bracket has been found.

Advantage: certain convergence by a factor of 2 at each iteration.

Ad hoc methods

Like for probabilities, there exist particular methods for some classical laws.
Let us consider the normal law.

©Guy Mélard, 1997, 1999 ISRO, U.L.B.
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Example. Algorithm of approximation by a rational fraction for quantiles of a normal
law (Beasley and Springer [1985]). Precision: 7 digits if [Z[1< 3,5, 6 if [IzZ[1=4, 5 if

[Iz[1= 5,5, and 4 si [1zZ[1=9,5.

FUNCTION PPND(P, IFAULT)
I ALGORITHM A% 111 APPL. STATIST. (1977), ¥0L. 26, NO.1
C PRODUCES NORMAL DEVIATE CORRESPONDING TO LOWER TAIL
C AREL OF P
C REAL VERSION FOR EPS = 2 **% [-31)
C THE HASH 3UMS ARE THE SUMS OF THE MODULI OF THE
C COEFFICIENTS. THEY HAVE NO INHERENT MEANINGS BUT ARE
C INCLUDED FOR USE IN CHECKING TRANSCRIPTIONS
C STANDARD FUNCTIONS AES, ALOG, AND SQRT ARE USED
IMPLICIT DOUELE PRECISION (A-H,0-Z)
c FEAL ZERO, SPLIT, HALF, ONE
c FEAL A0, Al, AZ, A3, BEl, B2z, B3, B4, CO, Cl, CZ, C3,
c §D1, D2
DATA ZERO /0.0D0/, HALF /0.5D0/, ONE /1.0D0/
DATA SPLIT /0. 4200/
DATA A0 / 2.50662 82385 4D0/
DATA A1 / -15.61500 06252 900/
DATA A2 / 41.39119 77353 400/
DATA A3 / -25.44106 04963 700/
DATA BL / -§.47351 09309 0DO/
DATA B2 / 23.08336 74374 300/
DATA B3 / -z1.06224 10182 600/
DATA B4 / 3.130582 90983 3D0/
c PRINT+*,' HASH SUM AE 143.70383 55807 &'
c PRINT*, A0 + AZ + B2 + B4 + ABS (Al + A3 + El + B3)
DATA CO / -2.78718 93113 800/
DATA C1 / -2.29796 47913 4D0/
DATA C2 / 4.55014 12713 500/
DATA C3 / 2.32121 27685 8DO/
DATA D1 / 3.54356 92476 200/
DATA D2 / 1.63706 78189 700/
c PRINT*,' HASH SUM CD 17.43746 52092 4°
c PRINT#, C2 + 03 + D1 + D2 + AB3(CO + CL)
IFAULT = O
0 = F - HALF
IF (AB3{ Q) .GT. SPLIT) GOTO 1
R = Q%Q
PEND = 0 * (((&3 * R 4+ AZ) * R + Al) * R + &0} /
* [({{{B4 *R + B3] * R + B2) * R+ Bl} * R + ONE)
FETURHN
1R="F
IF (Q .GT. ZERO) R = ONE - P
IF (R .LE. ZERO) GOTO 2
E = SQRT{ - LOG(R) )
PFND = ({(C3 * R+ C2) * R+ CL) * R + CO}/
*#  ({D2 * R 4+ Dl) * R + ONE)
IF (0 .LT. ZERO) PPND = -PPND
RETURHN
z IFAULT = 1
PFND = ZERD
FETURHN
END
©Guy Mélard, 1997, 1999 ISRO, U.L.B.
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Example. Simple algorithme for quantiles of a normal law (Wichura [1987], see

Thisted [1988, p. 332])

v — -2 logip)
H o+ log(=2*m*v)

Hp & (vF{1 - 8))"(1/2)

8 =z'v + (2 - z1/v 2 + (-14 + ax - =221/ (2%v3)

with only a 2-digit precision for p < 0,1 and 4 digits for p < 0,025.
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Summary of the practical methods

33

Distribution  Probabilities

Quantiles

normale many (Taylor, continued fractions)
Student t several approaches

béta series, continued fractions

Fisher F series, rational functions

chi carré récurrence, fraction continuée

Rational approximations
Several approximations
Numerical solving
Numerical solving

série de Taylor
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FREQUENCIES OF AN EMPIRICAL DISTRIBUTION

A priori, no problem since this is a simple counting procedure.

But what for very large number of observations? For example: plot of distribution
function, quantiles.

Not feasible to evaluate for each real number but at all point X =i 10" where d> 0.
If finite support, then finite number of points. Otherwise, truncate the support.

Example. Correlation coefficient r known to be between -1 and 1.

Suppose an accuracy of 3 digits => d = 3.

We consider i 107, i =-999, ..., 999

corresponding to an interval [(i - 0,5) 107 ; (i + 0,5) 107[,

except for i =-1000 and i = 1000 (with intervals of width 0,5 107).

The following algorithm performs counting using 2001 counters (the sign(r) function
gives +1 or -1, according to r > 0 or r <0):

Tableau C(-1000:1000): rmmmérique
Variable r: numérigque
Effectuer CaloculCorrélation(r)

i « lr*lo00 + 0,5%=igne (¥)]
Cli) « Cii) + 1
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QUANTILES OF AN EMPIRICAL DISTRIBUTION

Let the data X, i=1, ..., n,

and p, 0 < p < 1, the order of the requested quantile.
Denote X the ith observation ranked in increasing order.
We want to determine the order p quantile, X,

The distribution function is a step function. Let integer k=np .
Let us distinguish two cases:
kin<p<(k+1)/n: X=X+ 1)
p = k/n. Several conventions (see procedure SAS Univariate),. e.g. the middle
of the interval between X and Xy 1).
Algorithm:
k « Lop]

Xy — Mk ot 1}
i |k - pnl < 10%(-7)
alors =y & (Hopg + Hes )72
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Sorting

Highest cost : sorting.

Simplest sorting algorithms require a number of operations of order k.n’, where k is a
constant.

Operations: comparisons (a=? b) and exchanges (a -« b, i. e. the three assignments,
strictly in that order ¢ — @, a « b, b « C, where Cis a temporary variable)

More complex algorithms (Heapsort, Quicksort) require a number of operations
k.nlog(n) (Knuth [1973]).

When any quantile can be requested, a sorting algorithm is faster

But when only a few quantiles are requested: better not to sort the whole data set but
to carry out what is called a partition.
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Partitioning

A partition compared to a pivot X consists in subdividing, by permutation, the
observations in two subsets
= on the left, those which are smaller than X, and,

* on the right, those which are greater than X.

To determine the requested quantile: carry out a partition with respect to the ordered
observation Xy, which is confused with that quantile.

One starts from an initial pivot (e.g. the k-st observation).

Then reiterate the partition on the left X if the position of X is greater than K and on the
right of X if the position of X is smaller than k

When pivot X arrives in position K, the quantile has been found.
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The algorithm is as follows:

L «— 1
E &« n
Répéter
X o
i« L
i <« R
Itérer

Tant que xH; < X

faire 1 &« 1 + 1

fintantque

Tant que x5 > H

faire J &« 7 - 1

fintantqus
sortir si i > 7

Hy £ Hy
1 1+ 1
1< 1-1
finitérer
81 jJ < k alors L « 1
81 k < 1 alors R « j
jusqu’a L = R
Hipy S Hy

finsi {plus a droite}
finzgi {plu=z a gauche!

{pivot

= pivet a gauche!

i= pivet a droite!

{&changer

{fin partition!

~
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Examplb

16 12 29 85 18 87 10
for determing xgy Start from X =x4 =85

16 12 29 85 18 87 10

L=1 1=3 1=EkE=7

Exchange 99 and 10.

16 12 10 85 18 87 89

L=1 1=4 =6 E=7

Ezxzchange 95 and 57,

16 12 10 oy 1s 85 89

Mothing to exchange.
16 12 10 87 18 95 99
L=1 j=5 1=6 E=7
Partition with respect to 85 finished but 95 = x5 too large. Look on the left. Prvot 15 XX =87,
16 12 10 87 18 95 99
L=1 i=4 j=E=5
Exchange 87 and 18
16 12 10 18 87 95 99
L=1 =4 1=E=35
Partition with respect to 87 finished but 87 = x5, too large. Look on the left. Pivet 15 X = 15,
16 12 10 18 87 85 99
L=1 k=4

Mothing to exchange. Partition with respect to 18 = xgy 18 fimshed. Algorithim 1 terminated .
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Remark. The sorting algorithm called Quicksort is based on a recursive use of
partitioning in each subsets of a partition at each stage.

Remark. The procedure given above is not practical when n is extremely large.

Start then from the empirical distribution of cumulated frequencies.

Let us continue the example related to the correlation coefficient r rounded up to 3

decimal digits, r = i 10~

Example. Suppose the counts C(i), i =-1000,

..., 1000. The algorithm is as follows.

Tableau C(-1000:1000): numéridque
Variabhle r: numérimquie

i« -1000

cum < 0.0

Tant que cum < p

faire oum o+ ocum + C(i)sn
i+~ 1i+4+1

fintantoue

ko & (1 - 1) /1000
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Useof MATLAB

Law Probabilities/ Cumulated
Density function probabilities/ quantiles
Distribution function

MATLAB GKSLIB MATLAB GKSLIB MATLAB GKSLIB

Béta betapdf betacdf betainv

Binomial binopdf binocdf  binp binoinv

chi square chi2pdf chi2edf  chisqp chi2inv  chisqq
Exponential exppdf expedf expinv

Fisher F fpdf fcdf fdistp finv fdistq
Gamma gampdf  gammad gamcdf gaminv
Géometric geopdf geocdf geoinv
Hypergeometric hygepdf hygecdf hygeinv

Normal normpdf normcdf  normp norminv  normgq
Poisson poisspdf poisscdf  poissp poissinv  poisq
Student t tpdf tedf tinv

Discrete uniform  unidpdf unidcdf unidinv
Continuous unifpdf unifcdf unifinv

uniform

Weibull weibpdf weibcdf weibinv
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Let x a matrix whre rows correspond to observations and columns, to variables :

iqr(x) interquartile interval
pretile(x,p) order p/100 quantile
Also:
fzero('function', root of function(x) close to val
val)
median(x) row vector with medians of the columns
sort(x) sort in increasing order of each column
f.ex. [y,i] = sort(x) sends in i the permutation such that y = x(i)

©Guy Mélard, 1997, 1999 ISRO, U.L.B.
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3.3. GENERATION DE PSEUDO-RANDOM
NUMBERS AND VARIABLES

GENERATORS OF PSEUDO-RANDOM NUMBERS
Choice of a generator

Portable generators

Bad generators

Tests of random number generators

GENERATORS OF PSEUDO-RANDOM VARIABLES
Inverse distribution function

Ad-hoc methods
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Random processes

Sampling
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©Guy Mélard, 1997, 1999 ISRO, U.L.B.



Chapter 3, section 3.3. Generation of pseudo-random numbers and variables 45

GENERATORS OF PSEUDO-RANDOM NUMBERS

Pseudo-random numbers are used in various methods of simulation, for the study of
complex stochastic models,
* in industry (management of a production chain),
* in the building industry (fitting of a car park)
* in telecommunications (developement of protocols of transmission or network
architecture).
In statistics
* to compose a random sample in surveys
» for the randomization of an experimental designs
» for the study of methods of estimation and tests
distribution of a complex statistic in the case of a finite sample
precision of an estimator or the power of a test when the assumptions are not filled
* jacknife and bootstrap methods
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A long time ago, random numbers come from lotteries or other games of chance
They were made available in tables (those of Rand Corporation are most famous)
Nowadays the needs are such as one must resort to a deterministic process to produce
them : using algorithms.

Therefore the quality of the pseudo-random numbers which are produced must be
investigated

One of the first methods: taking a number of 2 (originally 4) decimal digits, square it
and take the 2 (4) central figures. The left-hand column of the following table shows
how this process can be bad (accumulation in 0).

Génération de valeurs nulles Périodicité trés courte

X o = 44 a=2,b=3, m=10,
Xop=0

X;=(2x0+3)mod 10 =3

(44)%=1936 - X{=9

2 _ —
(93)7 = 8649 - Xp =064 X,=(2x3+3)mod 10 =9

2_ -
(64)°=4096 - X3=09 Xy= (2 %9 +3)mod 10 =1

2 _ _
(09)° =0081 - X4 =08 X,=(2x1+3)mod 10 =5

2 _ -
(08)° = 0064 - X5 =106 x§:(2x5+3)mod 10 =3

2_ -
(06)°=0036 - X¢g=03 Xg=(2%3+3)mod 10 =9

2_ -
(03)7=0009 - X7 =00 X, = (29 +3)mod 10 =1

(00)2=0000 — Xg =00

Xg=(2x1+3)mod 10 =5

(example is drawn from U. W. POOCH and J. A. WALL, «Discrete Event Simulation:
A Practical Approach», CRC Press, Boca Raton, p. 149 et p. 150.)
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The most successful methods rest on an algorithm of linear congruence.
The algorithm depends on three parameters a, b et m.

One starts from a seed X, = V(0).

At stage (n+ 1),

vin + 1) <« (a v(n) +Db) nod m
u(n + 1) « v(n + 1)/m

The numbers X, = V(n) obtained are located between 0 and m- 1.

Consequently, the numbers u(n) obtained are located between 0 and (m- 1)/m.

To exploit the binary character of the computer, m= 2¥is taken.

We need to study the properties of the sequence of numbers {u(n)}.

The column on the right of the above table shows a bad choice of the parameters a, b
and m (periodicity of period 4).

Génération de valeurs nulles Périodicité tres courte
X, =44 a=2,b=3, m=10,
Xo=0

2
44)7=1936 - X1=93
(44) X1 X;=(2%0+3)mod 10 =3

2 _ —
(93)7 = 8649 - X =64 X,=(2x3+3)mod 10 =9

2_ -
(64)° = 4096 - X3=09 X3=(2%9+3)mod 10 =1

2 _ -
(09)° =0081 - X4 =08 X,=(2x1+3)mod 10 =5

2 _ —
(08)° = 0064 - X5 =106 x§:(2x5+3)mod 10 =3

2_ -
(06)°=0036 - Xg=03 Xo=(2%3+3)mod 10 =9

2 _ —
(03)7=0009 ~ X7 =00 X7=(2%x9+3)mod 10 =1

(00)2=0000 — Xg =00

Xg=(2x1+3)mod 10 =5

(example is drawn from U. W. POOCH and J. A. WALL, «Discrete Event Simulation:
A Practical Approach», CRC Press, Boca Raton, p. 149 et p. 150.)
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Choice of a generator

The choice of the parameters a, b and mis limited by theorems such as the following:
Theorem
If m= 2% bis odd and if (a-1) is a multiple of 4, then the period of the
sequence {u(n)}, that is to say the smallest integer number K such that u(n+ k) =
u(n) for all n, is m.

When results of simulation are reported, it is essential to describe the generator used
completely, including the seed, so as to guarantee the reproductiveness of the results.
Indeed, when one generates several sequences starting from the same seed, one finds
the same sequence.

Conversely, to have a different sequence, another seed should be taken.
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Portable generators

For reasons of effectiveness, the parameters of the generators are often selected

according to the processor of the computer.

There are also portable generators, like that of Wichmann and Hill [ 1982 ] which

employs a combination of three generators.

FUNCTION FARDOM(L)

ALGORITHM A5 183  AFFL. STATIST.
{l9gz) voL. 31, NO. 2
FETUENS 4 PSEUDO-EANDOM NUMEER
RECTANGULARLY DISTRIEUTED
EETWEEN 0O AND 1.
I¥, IY, AND IZ SHOULD EE SET TO
INTEGER VALUES EETWEEN 1 AND 30
1 AND 30000 BEFORE FIRST ENTEY
INTEGER ARITHMETIC UP TO 30323 IS REQUIRED

Lo IR R R T e e e e R e R

IMPLICIT DOUELE PRECISION (A-H,0-Z)
COMMON /RAND/ I¥, IY, IZ

IX = 171%MOD (IX, 177) - 2#{IX/177)
I¥ = 172*MOD(IY, 176) - 35%(IT/176)
IZ = 170%*MOD (IZ, 178) - 63%({IZ/178)

IF (I¥ .LT. 0) IX
IF (IY .LT. 0) IY
IF (IZ .LT. 0) IZ

IX + 30ze9
IT + 30307
IZ + 30323

RANDOM = AMOD{FLOAT({IX) / 30269.0 +
* FLOAT (I¥) / 30307.0 +

* FLOAT(IZ) / 30323.0, 1.0}
RETURN

END
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Bad generators

Generators can be very bad.
We should never select a generator at random.

For example, here is the diagram {u(n), u(n + 1)} that can be obtained for a bad

generator (a =3, b =0, m = 64, v(0) = 25):

Excerpt from Kennedy and Gentle [1980], p. 148.

60 - i

X" (a) b

50 -
ol
30 |-
20 |-

10 b, *

Tests of random number generators

One can distinguish

» theoretical tests which use the procedure of congruence itself (in particular by

deriving the autocorrelation function)

* empirical tests which consist in passing from long realisations of pseudo-random

50

numbers in a statistical series of tests the purpose of which is to detect a structure

or a nonuniform distribution.
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GENERATORS OF PSEUDO-RANDOM VARIABLES

Up to now we considered only pseudo-random numbers distributed uniformly between
0 and 1.

In practice, one must frequently generate random samples according to laws of
probability given or even realisations of a random process.

We consider here how to produce a realisation of a random variable whose distribution
function is F(X).

Several approaches are available but we will stress the first, conceptually simplest and
often the fastest.
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| nver se distribution function

Let us determine the quantile of order u where U is a realisation of a generator U of
random numbers between 0 and 1.
This is based on the following theorem:
Theorem
If U is a random variable with a uniform distribution over [0; 1[, and if F(X) is a
continuous and increasing distribution function, then X = F"'(U) has a law with
distribution function F(X).
Consequently, if U is a pseudo-random number between 0 and 1, we take X = F'(u).
The advantage of that method is that it provides correlated realisations when the same
sequence of pseudo-random numbers are used for several laws.

Examples. For the normal law, we can use function PPND given above (Beasley et
Spinger [1985]).

Two other symmetric law frequenly used in non-parametric statistics are the logistic
law and the double exponential law (or Laplace law) with respective densities (Patel et
al. [1976]):

-X/o

e

0= v ey

|
f(x)=—-e ",
) ===
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Examples. Exponential law.

Exponential law with mean 1

0.8 +
06 +

04 1+
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Ad-hoc methods

We first consider two methods for the standard normal law.
2.1 based on a version of the central limit theorem.
If the U; are independent random variables with a uniform distribution over [0; 1]

X, == 2 L N(D).
™ n/12 N-o (@)

Note that the mean of the sum of the U; is n/2 and its variance is n/12.

In particular, the choice of n= 12 is practical, because it suffices to subtract 6 from
the sum of 12 pseudo-random numbers and the approximation of the normal law so
obtained is not bad.
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2.2 Box-Muller transformation based on the following theorem:
Theorem
If U, and U, are two independent variables with a uniform distribution over [0;
1],
then X, =,/- 2logU, cos(2pU,) and X, =,/- 2logU, sin(2pU,) are two
independent variables with a normal N(0, 1) distribution.
Other ad-hoc procedures are deduced for distributions based on the normal
distribution. For example, a chi square law with 4 degrees of freedom can be obtained
from four values generated from a N(0; 1) using the formula
Co=X]+X]+X]+X].

Remark. There exist other methods with a less general appeal : acceptance-reject
methods and sampling methods in arrays (for discrete laws).
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GENERALISATIONS

Multivariate laws

A multivariate normal variable X with k dimensions, and covariance matrix 2 = LLT,
can be generated by starting with a vector Y of k independent normal variables with
variance 1, and using the following theorem.

Theorem

If>= LLT, then the covariance matrix of X=LY is 2.

Random processes

A time series Y, Y», ..., can be generated according to an autoregressive process of
order 1, with equation Y; = @ Y + X, where the X; are independent random variables
with mean 0 and variance o”.

Note that var(Y,) = a*/(1 - @).

The realisations of X; are obtained as above.

To start the recurrences, one could have supposed that Y, = 0, so that var(Y;) = 6°. But
then, a part of the series should be abandoned at the beginning in order to reduce the
effect of that initial condition.

Instead of that, it can be prefered to generate y; from a law of variance 6*/(1 - @) and
use the recurrence for y,, ...
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Sampling

Let us extract a random sample of size n in a finite population, where the individuals
are indexed by i, 1 =1, ..., N.

For a sample with replacement, one can consider n realisations Uy of a generator U of
pseudo-random numbers between 0 and 1, and take individual i, = Nu, + 1.

For a sample without replacement, we should examine if the individual has not yet
been selected. In the affirmative, that pseudo-random number should be rejected.

A faster procedure but which doesn’t give exactly the requested size, consists in
generating N realisations U; of a generator U of pseudo-random de numbers between 0
and 1, and select individual i if u; <n/N.

A more accurate procedure consists in (1) generate N realisations U; of the same
generator U, (2) sort them while keeping the indices i, (3) select the first n indices i.
The algorithm of McLeod and Bellhouse (1983) consists in taking the first n elements
of the population, then, fori =n+1, ..., N, we generate a realisation U; of the same
generator U and we compute K- 1 + @u;land, if kK £ n, we replace the element K of
the sample by the element i of the population.
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Per mutations

The following algorithm, due to Page (1967, with a correction) allows to generate a
random permutation of the integer numbers 1 to n, ranged in a vector RANK.

Note: the version given by Kennedy and Gentle (1980) contains an error.
SUBROUTINE PERMAL ( RANE, N )

C———— GENERATES A RANDOM PERMUTATION OF THE FIRST N INTEGERS
C IN ERANE

L= ALGORITHM OF PAGE [(1967) (with a correction: the last
C-——-- line bhefore CONTINUE iz missing in the paper)

|: _____

INTEGER RANK (N}, TEMP, TRANS
DO 40 NNEW = N , 2 , -1
TEMP = RANE|NNEW)
TEANS = INT{ (NNEW)*{RANDOM(L)}) + 1
RANE (NNEW) = RANK|TRANS)
FANE (TRANS) = TEMF
40 CONTINUE
RETURN
END

(the 4th line from the end is missing in Page (1967))
Generating all the permutations of a nuple of numbers, X, i = 1, ..., n can be done
using the following Fortran program (Langdon [1967]) run n! times.

SUEROUTINE PERMUOT ( RANE, N )

C-——-- GENERATES ALL THE PEFMUOTATION: OF THE FIR3T N INTEGERS
C IN RANE

C-——-- ALGORITHM OF LAMGDON G&. ., CACM 10, No 5, 1967, Z935.
C-——-- PARTIALLY BASED ON AN IMPLEMENTATION OF E. DEVILLERSA

INTEGER RANK (N}, TEMF
DO 40 N1 = N, 2, -1
TEMP = RANK(1)
D0 20T = 1, N1 - 1
FANE(I) = RANE(I + 1}
20  CONTINUE
RANE (N1} = TEMP
IF (RANK(N1} .NE. N1) RETURN
40 CONTINUE
END
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Useof MATLAB

Pseudo random numbers over (0,1) can be obtained by means of function rand. Two
variants can be used

rand(n) for a matrix of size (n, n)

rand(m,n) for a matrix of size (m,n).

rand('seed') in order to get the current value of the seed of the generator
rand('seed', n) in order to set the seed to value n.

Remark. The algorithm makes use of the linear congruence with

seed = (7" *seed)mod(2’' —1).

It is also possible to generate realisations of a normal law with mean 0 and variance 1,
using randn with the same use as rand.
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The following functions of the statistical toolbox of MATLAB and the librairy
GKSLIB (Gordon K. Smith, available on server StatLib; it is required to use rand in
order to generate the arguments of the functions) are also related to this section

Law
quantiles
MATLA GKS
B

Béta betarnd
Binomial binornd
chi square chi2rnd  chisqq
Exponential exprnd
Fisher F frnd fdistq
Gamma gamrnd
Géométric geornd
Hypergeometric hygernd
Normal normrnd  normgq
Poisson poissrnd  poisq
Student t trnd
Discrete uniform  unidrnd
Continuous unifrnd
uniform
Weibull weibrnd

A random permutation of intergers 1 to n can be produced by:
randperm(n)
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Example of the Lilliefors test

The Lilliefors test consists in the application of the Kolmogorov-Smirnov test for
testing normality in the case of a normal law which is not specified (which means that
the parameters of the normal law are estimated using the sample sample as the one
used in the test).

Lilliefors [1967] has presented one of the first tables of critical values obtained using
the Monte Carlo method.

The Kolmogorov-Smirnov test is a test of a null hypothesis related to the distribution
function F(X).

The null hypotheis which is tested is that F(X) = F, (X) where F (X) is the distribution
function of a fully specified law.

The statistic used in the test is the supremum of the difference in absolute value
between the empirical distribution function F,(x) and Fq (X):

F\ 00 = Fy (%)

D, =sup
X
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Excerpt from Law and Kelton [1991], p. 389.

0 T I T |
‘\’H) X(:) '(l 3 Xl'“

FIGURE 6.39 -
Geometric meaning of the K-S test statistic D, for n = 4.
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This expression is Not equivalent to (Law et Kelton [1991])
igllaxn Fn (X(i)) -F (X(i) )‘

but, taking care of continuity to the right of F. (x), to

max{i éliauin Fo (X)) = Fo (X)) i érll,a)fn F (X)) = Fa (X )},

with Xy = —9.

Excerpt from Law and Kelton [1991], p. 389.

0 T
T I |
X iy X3 X

FIGURE 6.40 . ‘ '
An example where the K-S test statistic D, is not equal to D).
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The distribution of the statistic under the null hypothesis is known (although of a
rather complicated form).

The Lilliefors test differs from the Kolmogorov-Smirnov test by the fact that the
distribution function of F (X) is that of a N(m; 0) law where mand O are estimated

from the same sample of size N used for computing the test statistic.

. . . . X=m, . .
It is therefore not entirely a priori specified. Fo(X) = ®(——) is taken where rh is the
o

mean of the sample and & is the unbiased estimator of the population variance.
The distribution under the null hypothesis is not the same and, as a matter of fact,
differs even strongly asymptotically.

For example, the quantile of order 0,95 for large n is obtained by the formula

0,886/+/n instead of by the formula 1,36//n.
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It is possible (as Lilliefors did) to investigate the distribution under the null hypothesis
by proceeding as follows.

Let us first remark that the test is invariant with respect to mand 0 and that the result
doesn’t therefore depend on mand o.

Hence, we can take simply m=0 and 0 = 1.

Denote by N the number of realisations of the sample of size n.

(We explain later how to choose N, although this is a similar problem to determining
the size of a sample in statistics).

The algorithm is as follows:

Tahleau Dn(N), xi(n): nunérigque

Variahle i, r, ¥BAR, WARI, cquantile : numérique

Four £ = 1 & N

faire Pour i = 1 &4 n
faire Effectuer GénérationNormale(| x(i) ]
finpour
Effectuer CalculMovenneVWariance (X, n, xBAR, WVARI)
Effectuer Calcullni( =, n, xBAR, WVARI, Dnir) )

finpour
Effectuer FecherchelQuantile| Dn, quantile)

That algorithm makes use of the algorithms for computing the variance (see chapter 1)
and for determining a quantile (see chapter 2, section 2).
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Let us mention an increasingly useful presentation of critical values of tests in

function, for example, of the sample size, in the form of modified statistics, obtained

by a nonlinear regression.
So the critical values obtained by Lilliefors [ 1967 ] were supplemented by Stephens [

1974 ] who provides the following table.

l-a
Case Modified statistic 0,85 090 0,95 097 0,99
0 0 0 5 0
Kolm.-Smirn.  (+/n +0,12 +0,11/+/n)D, 1,138 1,224 1,358 1,480 1,628
Normal /n-0,01+0385/mD. 0,775 0,819 0,895 0,955 1,035
©Guy Mélard, 1997, 1999 ISRO, U.L.B.
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Other applications of the Monte Carlo method

We have seen the application of the Monte Carlo method to study the distribution of

test statistics under the null hypothesis. Also :

e compare several tests under the null assumption (in particular when the quality of
the approximation, for n large, by a classical law (normal, chi square) is to be
evaluated

* when the distribution under the null assumption is unknown

* when one is interested in the exact distribution for small samples

* analyzing the level of the test when the underlying assumptions are not valid
(normality, symmetry, independence of the observations).

However, it is mainly for the analysis of power of tests that the Monte Carlo method
can prove to be most necessary.

Indeed, except for some very particular cases, the distribution of test statistics under
the alternative assumption is never known.

One can simulate artificial observations in many situations of the alternative
assumption, when the conditions for application are valid or even when they are not.

In all the cases which precede, the conclusions are valid only if a sufficient number of
realisations are produced, this number being dependent on the desired precision.

Finally, artificial samples can be used to illustrate a procedure : an example. One can

then limit oneself to only one realization or a very small number. The range of the
conclusions obviously is very limited.
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Satistical analysis of theresults

The most interesting results are primarily as follows:
» empirical frequency of rejections of the hypothesis when the level of probability of
the test is fixed and we
 cither want to analyze the quality of the theoretical distribution
e or want to study the power of the test;
* critical values of the statistics when the level of probability of the test is fixed and
we
* either are interested in a table of the critical values
e or want to deduce an approximate formula making it possible to find them (for
use inside a program);
e obtaining an approximation of the whole empirical distribution making it possible
to evaluate
* the probability of significance
» a confidence interval
* obtaining the parameters of the distribution of an estimator :
* average, median
» standard deviation (to be compared with the estimate possibly obtained by the
theorem of Cramér- Rao)
» coefficients of asymmetry and flatness
* goodness of fit test of the distribution of the test statistic or the estimator
(normality, ...
* goodness of fit test compared to a uniform distribution on [ 0; 1 ] of the distribution
of the probabilities of significance produced by the test.
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Statistical methods can be used on the results of Monte-Carlo analysis like as with any
experimental design.

It is thus desirable that the results of the study are in a form which lends itself to
further analyses, in particular with an aim to investigate new properties not suspected
at the beginning.

It is thus recommended to produce the results in the form of a data file which can be
used in a statistical software package, rather than to calculate the synthetis results
inside the simulation program.
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Let us consider the choice of number N of realisations of the simulations. It must be
based on the desired precision.

Example. Let us consider the case of the estimator of a parameter. The true value of
the parameter is m. The simulations based on N realisations provide an average rh with
a standard deviation ¢ . Provided that N is not too small, one can obviously determine
a confidence interval with coverage probability of 95% for min the form

M+1,965/ VN .

If we know an a priori approximation of ¢ and we set the desired precision, for
example 0,5 107, one can determine N by equating 1,965 /+/N = 0,5.107.
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Example. Let us consider the case of the quantile of order p, X,, of a population of
density function f(X). For example, if one can call upon a normal asymptotic
distribution as a first approximation, one can consider that f(X) is a normal density. It
is known (Cramér [1946 ]) that the error-type of the asymptotic distribution of this

quantile of order p is
I |pd-p)
f(x,) N

providing a possibility for determining N. Suppose that the statistic wre normalised so
that it has mean 0 and standard deviation 1, that p= 0,975 and that the requested
precision be & = 0,005. We obtain then X, close to 2 and thus
f(x,)=(2m ™" e? = 0,054 implying that
_ pd-p _ 0,024
T (x) 025107 2,9.107

=3,3.10°.
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Planning sampling plans

Not only the methods of statistical analysis apply to the results of Monte Carlo
simulations but experimental design can and even should be used to improve the
precision of the results and to reduce the number of realisations.

When a Monte Carlo analysis is prepared, it is necessary to describe with precision the
experimental design which will be followed and to adopt the same procedures
(identification of the factors, randomization, etc.) that those adopted for traditional
experiments (see Hoaglin and Andrews [ 1975]).
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Variance reduction procedures

Several variance reduction procedures are suggested in order to reduce the size of the
study with a constant precision for the results. The simplest of these procedures consist
in using the same sequence of pseudo-random numbers in appropriate circomstances,
as as follows.

Example. Two estimators of the same parameter [3 are proposed.
The question bears on a difference of bias.
Consider a first experiment where N, réalisations of the first estimation method give a

mean equal to B and a standard deviation (8"), and a second experiment where
N, realisations of the second estimation method have mean B and standard
deviation g(8?).

Consequently, provided that N; and N, are large enough, we have

BT -B7 = N(0;1).
& (B"), & (B”)
Nl N2
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With the same sequence of realisations of size N= N; = N, , we compute the
difference between the estimations of mean A= " — S and standard deviation
a(p’ -B?).

Consequently

1) 2
)
0(’3(1) —ﬁ(z))/\/ﬁ
But 6% (B" -B?)=d*(B")+ (B?Y)-2cov( B, ) and often cov(B", B3P )>0
so that it may be prefered to use the same sequence of pseudo-random numbers.
For example, if the correlation between two estimators is 0,75, the covariance equals
0,75 times the product of the standard deviations and, supposing those being equal,
a* (B - g?) equals 2 - 2.0,75 = 0,5 time one of the variances instead of 2 times, hence

a variance reduction with 4 as factor.
This can be translated into a number of realisations two times smaller.

Among the other procedures of variance reduction, let us mention the stratified
sampling methods (well known within sampling methods). See also Snijders (1984),
McGeoch (1992).
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Useof MATLAB

Besides generation of pseudo-random numbers and variables in MATLAB (functions
rand, nrand) and of its statistical toolbox,. MATLAB contains a reduced number of
statistical functions which can be used in connection with the methods of this section:

max Maximum

min Minimum

cumsum cumulated sum

Histograms can be obtained by the following procedures

hist(x) histogram based on x, with 10 classes

hist(x, k) histogram based on x, with k classes

hist(x, y) histogram based on x, with classes based on y

The following functions produce absolute frequencies and class limits without
making a plot:

[n,y] = hist(x)

[n,y] = hist(x, k)
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The statistical toolbox offers:

78

anoval analysis of variance with one factor
anova2 analysis of variance with two factors
ztest test for the mean of a large sample
ttest test for the mean of a small sample
ttest2 test of comparison of two means
boxplot box plots

normplot diagram for the Henri straight line
qqplot quantile-quantile diagram
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